Beschreibung
Ein wichtiger Bestandteil der heutigen Forschung in Bio- und Soft Matter Physik besteht daraus, Technologien zu entwickeln, um hoch komplexe und funktionelle Strukturen, die uns aus der Natur bekannt sind, nachzubilden. Hinsichtlich dessen ist vor allem die Methode der Selbstorganisation von Mikro- und Nanoteilchen hervorzuheben, durch die eine Vielzahl verschiedener Strukturen erzeugt werden konnten. Jedoch stehen wir bei diesem Verfahren noch immer vor der Herausforderung, Teilchen mit bestimmten Eigenschaften zu entwerfen, welche die spontane Anordnung der Teilchen in eine gewünschte Struktur bewirken. Einer der wichtigsten Designparameter ist dabei die Form der Bausteinteilchen.
In dieser Dissertation konzentrieren wir uns besonders auf die Anfälligkeit von Flüssigkristallphasen bezüglich kleiner Änderungen der Teilchenform und nutzen dabei das Beispiel der Selbstorganisation von Entropie-dominierter Kolloide, die dem Umriss nach verjüngten Ellipsoiden oder „Birnen“ ähneln. Mit Hilfe von geometrischen Werkzeugen wie z.B. Set-Voronoi Tessellation oder Cluster-Algorithmen analysieren wir insbesondere die Entstehung der Gyroidphase und der dazugehörigen Bilagenformation, welche bereits in Systemen von harten Birnen, die durch das pear hard Gaussian overlap (PHGO) Potential angenähert werden, entdeckt wurden. Des Weiteren zeigen wir durch Computersimulationen eine Strategie auf, um andere bikontinuierliche Strukturen, wie die Diamentenphase, zu stabilisieren. Schlussendlich betrachten wir sowohl rechnerisch (durch Simulationen) als auch theoretisch (durch Dichtefunktionaltheorie) die Auswirkungen kleiner Abweichungen der Teilchenform auf das Verhalten des kolloiden, birnenförmigen Teilchensystems, inklusive der Stabilität der PHGO Gyroidphase. Wir zeigen, dass die Entstehung des Gyroids auf kleinen nicht-additiven Eigenschaften des PHGO Birnenmodells beruhen. In “echten“ harten Teilchensystemen entwickelt sich diese Struktur nicht.
Insgesamt ermöglichen unsere Ergebnisse einen besseren Einblick auf das Konzept von notwendiger und hinreichender Teilchenform in Selbstorganistationsprozessen. Die birnenförmigen Teilchensysteme geben außerdem Aufschluss über einen ungewöhnlichen, kollektiven Mechanismus, um bikontinuierliche Phasen zu erzeugen. Dies deutet auf einen neuen, alternativen Konstruktionsweg hin, der uns möglicherweise hilft, noch unbekannte Eigenschaften natürlich vorkommender, gyroidähnlicher Nano- und Mikrostrukturen zu erklären.
Bewertungen
Es gibt noch keine Bewertungen.